SiHD3N50D
D Series Power MOSFET

FEATURES

－Optimal Design
－Low Area Specific On－Resistance
－Low Input Capacitance（ $\mathrm{C}_{\mathrm{iss}}$ ）
－Reduced Capacitive Switching Losses
－High Body Diode Ruggedness
－Avalanche Energy Rated（UIS）
－Optimal Efficiency and Operation
－Low Cost
－Simple Gate Drive Circuitry
－Low Figure－of－Merit（FOM）： $\mathrm{R}_{\mathrm{on}} \times \mathrm{Q}_{\mathrm{g}}$
－Fast Switching
－Material categorization：For definitions of compliance please see www．freescale．net．cn

PRODUCT SUMMARY		
$\mathrm{V}_{\mathrm{DS}}(\mathrm{V})$ at T_{J} max．	550	
$\mathrm{R}_{\mathrm{DS} \text {（on）})}$ max．(Ω) at $25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	3.2
$\mathrm{Q}_{\mathrm{g}}(\max).(\mathrm{nC})$	20	
$\mathrm{Q}_{\mathrm{gs}}(\mathrm{nC})$	3	
$\mathrm{Q}_{\mathrm{gd}}(\mathrm{nC})$	5	
Configuration	Single	

APPLICATIONS

－Consumer Electronics
－Displays（LCD or Plasma TV）
－Server and Telecom Power Supplies
－SMPS
－Industrial
－Welding
－Induction Heating
－Motor Drives

N－Channel MOSFET

ORDERING INFORMATION	
Package	DPAK（TO－252）
Lead (Pb)－free	SiHD3N50D－E3
Lead (Pb)－free and Halogen－free	SiHD3N50D－GE3

ABSOLUTE MAXIMUM RATINGS（ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ ，unless otherwise noted）					
PARAMETER			SYMBOL	LIMIT	UNIT
Drain－Source Voltage			V_{DS}	500	V
Gate－Source Voltage			$V_{\text {GS }}$	± 30	
Gate－Source Voltage AC（ $\mathrm{f}>1 \mathrm{~Hz}$ ）				30	
Continuous Drain Current（ $\mathrm{T}_{J}=150{ }^{\circ} \mathrm{C}$ ）	V_{GS} at 10 V	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	3.0	A
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		1.9	
Pulsed Drain Current ${ }^{\text {a }}$			I_{DM}	5.5	
Linear Derating Factor				0.56	W／${ }^{\circ} \mathrm{C}$
Single Pulse Avalanche Energy ${ }^{\text {b }}$			$\mathrm{E}_{\text {AS }}$	9	mJ
Maximum Power Dissipation			P_{D}	104	W
Operating Junction and Storage Temperature Range			$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to＋150	${ }^{\circ} \mathrm{C}$
Drain－Source Voltage Slope	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		dV／dt	24	V／ns
Reverse Diode dV／dt ${ }^{\text {d }}$ ）				0.22	
Soldering Recommendations（Peak Temperature）${ }^{\text {c }}$	for 10 s			300	${ }^{\circ} \mathrm{C}$

Notes

a．Repetitive rating；pulse width limited by maximum junction temperature．
b． $\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$ ，starting $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=2.3 \mathrm{mH}, \mathrm{R}_{\mathrm{g}}=25 \Omega, \mathrm{I}_{\mathrm{AS}}=2.8 \mathrm{~A}$ ．
c． 1.6 mm from case．
d． $\mathrm{I}_{\mathrm{SD}} \leq \mathrm{I}_{\mathrm{D}}$ ，starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ．

THERMAL RESISTANCE RATINGS				
PARAMETER	SYMBOL	TYP．	MAX．	UNIT
Maximum Junction－to－Ambient	$\mathrm{R}_{\text {thJA }}$	-	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction－to－Case（Drain）	$\mathrm{R}_{\text {thJc }}$	-	1.8	

Notes

a．Repetitive rating；pulse width limited by maximum junction temperature．
b． $\mathrm{C}_{\text {oss（er）}}$ is a fixed capacitance that gives the same energy as $\mathrm{C}_{\text {oss }}$ while V_{DS} is rising from 0% to $80 \% \mathrm{~V}_{\text {DSS }}$ ．
c． $\mathrm{C}_{\text {oss }(\text {（tr })}$ is a fixed capacitance that gives the same charging time as $\mathrm{C}_{\text {oss }}$ while V_{DS} is rising from 0% to $80 \% \mathrm{~V}_{\mathrm{DSs}}$ ．

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted）

Fig． 1 －Typical Output Characteristics

Fig． 2 －Typical Output Characteristics

Fig．3－Typical Transfer Characteristics

Fig． 4 －Normalized On－Resistance vs．Temperature

Fig．5－Typical Capacitance vs．Drain－to－Source Voltage

Fig． 6 －Typical Gate Charge vs．Gate－to－Source Voltage
freescale
飞思卡尔（深圳）功率半导体有限公司

SiHD3N50D
D Series Power MOSFET

Fig． 7 －Typical Source－Drain Diode Forward Voltage

Fig． 8 －Maximum Safe Operating Area

Fig． 9 －Maximum Drain Current vs．Case Temperature

Fig． 10 －Typical Drain－to－Source Voltage vs．Temperature

Fig． 11 －Normalized Thermal Transient Impedance，Junction－to－Case
freescale
飞思卡尔（深圳）功率半导体有限公司

SiHD3N50D
D Series Power MOSFET

Fig． 16 －Basic Gate Charge Waveform

Fig． 17 －Gate Charge Test Circuit

Fig． 14 －Unclamped Inductive Test Circuit

Fig． 15 －Unclamped Inductive Waveforms

Fig． 18 －For N－Channel

TO－252AA（HIGH VOLTAGE）

	MILLIMETERS		INCHES	
DIM．	MIN．	MAX．	MIN．	MAX．
E	6.40	6.73	0.252	0.265
L	1.40	1.77	0.055	0.070
L1	2．743 REF		0.108 REF	
L2	0.508 BSC		0．020 BSC	
L3	0.89	1.27	0.035	0.050
L4	0.64	1.01	0.025	0.040
D	6.00	6.22	0.236	0.245
H	9.40	10.40	0.370	0.409
b	0.64	0.88	0.025	0.035
b2	0.77	1.14	0.030	0.045
b3	5.21	5.46	0.205	0.215
e	2．286 BSC		0.090 BSC	
A	2.20	2.38	0.087	0.094
A1	0.00	0.13	0.000	0.005
c	0.45	0.60	0.018	0.024
c2	0.45	0.58	0.018	0.023
D1	5.30	－	0.209	－
E1	4.40	－	0.173	－
θ	0^{\prime}	10＇	0＇	10＇
$\begin{aligned} & 81965- \\ & 973 \end{aligned}$				

Notes

1．Package body sizes exclude mold flash，protrusion or gate burrs．Mold flash，protrusion or gate burrs shall not exceed 0.10 mm per side．
2．Package body sizes determined at the outermost extremes of the plastic body exclusive of mold flash，gate burrs and interlead flash，but including any mismatch between the top and bottom of the plastic body．
3．The package top may be smaller than the package bottom．
4．Dimension＂b＂does not include dambar protrusion．Allowable dambar protrusion shall be 0.10 mm total in excess of＂b＂dimension at maximum material condition．The dambar cannot be located on the lower radius of the foot．

Recommended Minimum Pads
Dimensions in Inches／（mm）

Return to Index

Disclaimer

Abstract

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. freestyle Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on it s or their behalf (collectively, "freestyle"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. freestyle makes no warranty, representation or guarantee regarding the suitabilit y of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vi shay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation specia I, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain type s of applications are based on freestyle's knowledge of typical requirements that are often placed on freestyle products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsib ility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specification s may vary in different applications an d performance may vary over time. All operating parameters, including typical pa rameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify freestyle's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, freestyle products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the freestyle product could result in personal injury or death. Customers using or selling freestyle products not expressly indicated for use in such applications do so at their own risk and agr ee to fully indemnify and hold freestyle and its distributors harmless from and against an y and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vis hay

Material Category Policy

freestyle Intertechnology, Inc. hereby certi fies that all its products that are id entified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwis e specified as non-compliant.
Please note that some freestyle documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002 /95/EC conform to Directive 2011/65/EU.

